您现在的位置是: 首页 > 上进 > 「无理数」复数的概念教学设计,常见类型及解题策略

「无理数」复数的概念教学设计,常见类型及解题策略

来源:吘唛魀网发布时间: 2022-11-22 07:05:23

摘要:形如的形式在数学中被定义为复数,其中为虚数单位,、为任意实数。要说复数的产生,先从数的演变史开始说起。最初,人们从自然界中启发,得到了数字1、2、3……,当然还有0,这就是自然数,来源人们对现实世界的认知。接着,如果1个馒头要均分给5个人,要怎么分,每人分多少呢?1段树枝...

「无理数」复数的概念教学设计,常见类型及解题策略

形如的形式在数学中被定义为复数,其中为虚数单位,、为任意实数。

要说复数的产生,先从数的演变史开始说起。

最初,人们从自然界中启发,得到了数字1、2、3……,当然还有0,这就是自然数,来源人们对现实世界的认知。

接着,如果1个馒头要均分给5个人,要怎么分,每人分多少呢?1段树枝被折成相等的2半,那一半是多少,怎么表示呢?人类为了知识的记录和文化的传播,一切从简,就发明了分数,当然也可以写成小数的形式:

=0.2,=0.5,=0.6等等。

到目前为止,来自于人们对现实世界的直观总结所建立的数字表达,它有明显的可参照对象、有轨迹可循、看得见、摸得着、想得到,人们后来就认为这些都是理所当然的,所以就叫它们为有理数。即所有可以表示为分数形式的数都叫有理数,当然自然数也可以表示为分数=0,=1,=3,=2,=5……。

随着人类文化的不断迭代发展,数学运算和数学表示在不断的丰富,除了+法、-法,根据类似2+2+2(3个2相加)难道就不能表示为更简单的形式么?3x2,于是乘法诞生,因为对于3+3+3+3+3+3+3+3这样的繁琐的运算,可以用更简单的表示8x3,so easy!

文化再次不停地迭代,5x5=25,3x3=9,2x2=4,是否完全可以再简单地表达?人类总是向着大道至简的目标前进,于是5x5==25,2x2==4……,有了平方数。

人类文化在迭代中不断地向前狂奔,有些人就脑洞大开了,不对呀!4是2的平方,9是3的平方,16是4的平方,妈呀!也就是说1的平方是1,0的平方是0,那么在平方结果中,只有0、1、4、9、16、25……会出现,那中间是不是少了很多数啊,谁的平方是2呢?又谁的平方是3呢?谁的平方是5?……连续自然数平方的结果并不是连续的自然数!

好吧,既然谁也不知道?那就给它个定义吧,难道还有数学不能描述的世界吗?数学就是为大世界服务的,必须补上这个漏洞,好嘞,的平方就是2,它表示=2,类似的=3,甚至还有=5等等。

突然感觉不好把握了,那么既然已经定义并存在了,它到底是多少啊?因为1的平方是1,2的平方是4,的平方是2,所以肯定比2小,也肯定比1大,但是能具体和其他数比较一下吗?至少知道大概是多少吧?突然发现,这已超出当时人类的脑洞了,不好理解了。

毕达哥拉斯(约公元前580至公元前500)是古希腊的大数学家。他提出“万物皆为数”的观点:数的元素就是万物的元素,世界是由数组成的,世界上的一切没有不可以用数来表示的,数本身就是世界的秩序。

为了理解,为了客观形象地认识它,就让现实世界来描述它,在几何学中,边长为1个单位的正方形,其面积很好算,比如边长为1米的正方形土地面积为1x1=1平方米,那么它的对角线是多少?根据勾股定理,设对角线长为,那么+=,即=1+1=2,好了,=,对,那个对角线的长度就是你们要找的的大小。

但是,究竟比1或者2或者任何其他整数大多少,能给一个大小比例吗?就像=0.6一样。

毕达哥拉斯学派的弟子希伯索斯(Hippasus)发现了一个惊人的事实,一个正方形的对角线与其一边的长度是不可公度的(若正方形的边长为1,则对角线的长不是一个像往常一样讲道理的数,它不是正常数),它真的没有办法用分数来表示,可是它确实存在啊!这一不可公度性与毕氏学派的“万物皆为数”(有理数)的哲理大相径庭。这一发现使该学派领导人惶恐,认为这将动摇他们在学术界的统治地位,于是极力封锁该发现的流传,希伯索斯被迫流亡他乡,不幸的是,还是遇到了毕达哥拉斯学派的门徒,在一条海船上被残忍地投入了水中杀害。

没天理啊,没有道理啊!于是一个没有道理的数(无理数)就这样出现在了数学领域中。欧几里得(约公元前330年至公元前275年)《几何原本》中就提出了一种证明是无理数的经典方法。圆周率、以及后来发现的自然常数=+++++……等等都是无理数。

“万物皆为数”如果继续有用,那么就得让数域继续膨胀,于是把无理数拉进队伍里!有理数和无理数合在一起被称为实数,为什么叫作实数,这是因为和虚数相对应的,有实就有虚,好了,就引出来今天的主角,虚数!

如果说实数是来源于对自然界数量的刻画(英文中标量、也叫纯量scalar,就是刻画的意思),有理数是来源于对比列的刻画,无理数是来源于对某种长度的刻画,那么,虚数就是人为制造的,是在现实生活中完全找不到实际相应背景的,它用英文单词imaginary来表示,imaginary的英文原意即为虚构的、想象的、假象的,简写为。

为什么非要假想一个这样实际不存在的数呢?因为在当时的数学公理体系中,时常有以下这样的现象发生。

至此,复数理论比较完整和系统地建立起来。

这个大厦就是复数体系,英文为complex number, complex就是复杂的、复合的意思,复数就是复合了实数和虚数的复杂数系,因此可以表示为,是实部,是虚部,和的大小分别是对实部和虚部大小的刻画,当为0时,那就是在实数域裸奔,当为0时,那就是在虚数域飞翔,所以有实轴和虚轴的平面也可以称为复平面,任何一个复数也可以表示为有序实数对,它们分别表示一个复数在实、虚两个维度的大小。

与纯粹的实数不同,在复数集合中有可能不存在大小关系,也就是说两个复数之间也许不能比较大小。任何量的大小比较都是在1个维度限定下进行的,当超越1个维度时,量的传统大小比较将毫无意义。回想我们最初的定义:数字是那些能够由小到大进行排列的符号,在这个意义上,复数确实不是数字。这并不意外,在它的定义平面上,它们还有自己的方向属性,这也使数变得越来越抽象了。但是,复数集合是强大的,它包含实数集合,因为只需要在复数中令虚数前面的系数为0就可以了。

复数的存在,保证了n次方程根的完备性,只要允许“真根”(正实根)、“假根”(负实根)和“虚根”(复数根)存在,n次方程将有n个根,一个方程解的数量与它的次数相同,这是”代数基本定理“。

欧拉和高斯用复数来解决代数和数论。

哈密顿(爱尔兰数学家1805至1865)用复数来研究物理,并根据复数发明四元数理论。

柯西和高斯设计了适用于复数的微积分,被证明非常强大。

法国数学家雅克.哈达玛说:“实数领域中两个事实之间的最短路径经由复数领域“

下面就是数的进化史,不断有新数被编进队伍,数也越来越抽象,但也越来越强大。

文章到此结束。以上就是「无理数」复数的概念教学设计,常见类型及解题策略的相关内容,更多请查看本站其他文章。

原文地址: /sj/79908.html
原文标题:「无理数」复数的概念教学设计,常见类型及解题策略
版权声明:除特别声明外,本站所有文章皆是本站原创,转载请以超链接形式注明出处!

上一篇:「教恩光堂」四川神学院地址,成都百年教堂

下一篇:返回列表